globalchange  > 影响、适应和脆弱性
项目编号: 1444233
项目名称:
RAPID: GPS Observations of Co- and Post-seismic Deformation in the Argentine Puna from the 1 Apr 2014, Mw 8.2, Pisagua, Chile, Earthquake Sequence
作者: Robert Smalley
承担单位: University of Memphis
批准年: 2013
开始日期: 2014-06-01
结束日期: 2017-05-31
资助金额: USD38087
资助来源: US-NSF
项目类别: Standard Grant
国家: US
语种: 英语
特色学科分类: Geosciences - Earth Sciences
英文关键词: earthquake ; april ; pisagua ; chile earthquake ; chile ; argentine puna plateau ; unusual sequence ; northern chile subduction zone ; mw ; datum ; rapid response ; far-field co ; gps station ; surface deformation ; deformation process ; large megathrust earthquake ; northern chile ; magnitude ; event ; chile megathrust ; ground deformation ; earthquake epicenter ; deformation close ; international earth science community ; unavco facility archive ; survey mode gps ; large earthquake ; chilean group ; tohoku japan earthquake ; eastern cordillera ; significant deformation ; large dense gps network ; region ; rapid response project
英文摘要: An unusual sequence of earthquakes began in the northern Chile subduction zone on March 16, 2014 with a 10-day long swarm of earthquakes that migrated to the north - a pattern similar to the swarm of earthquakes that presaged the 2011 magnitude 9.0 Tohoku Japan earthquake, which provoked concern in Chile because this megathrust zone last failed in a magnitude 8.8 earthquake in 1877 and is thought capable of producing a magnitude 9 earthquake again. So far, the largest event in the sequence is the April 1, 2014 magnitude 8.2 Pisagua, Chile earthquake. The ground deformation caused by this large earthquake will persist long after the earthquake and decay over a period of years. Measurements of the surface deformation during and after the event can provide important information about the properties of the Earth in the region, improve understanding of deformation processes, and aid in determining regions with a high likelihood of producing large aftershocks. Large dense GPS networks installed by U.S., German, French, Peruvian, and Chilean groups in Chile will record this deformation close to the earthquake epicenter but significant deformation is expected farther away in northwest Argentina. This rapid response project will install new GPS networks and collect data from existing GPS stations in the Argentine Puna Plateau to fully capture the ground motion associated with this event. These data will contribute to understanding the physics and hazard potential of large megathrust earthquakes in Chile and elsewhere, such as Cascadia, Alaska, and Japan.

The April 1, 2014 Mw 8.2 Pisagua, Chile earthquake was the largest event in an unusual sequence of earthquakes, which began in the northern Chile subduction zone on March 16, 2014. Based on the USGS preliminary teleseismic and surface wave inversion, slip occurred along a 250 km along-strike and about 150 km down-dip section of the Chile megathrust that last failed in an M 8.8 earthquake in 1877. U.S., Chilean, Peruvian, German, and the French groups have built relatively dense continuously operating GPS (CGPS) and survey mode GPS (SGPS) station networks in this region, thus the near-field inter-, co- and post-seismic transient signals will be well observed in northern Chile. However, there will be significant co-seismic and post-seismic transient motion up to 700 km from the main event, incorporating nearly all of the Altiplano and at least much of eastern Cordillera in Bolivia, and the Puna of northwestern Argentina. Measuring the mid- and far-field co- and post-seismic signals in the Altiplano and beyond will be critical to any geodynamic modeling effort. In rapid response to the April 1, 2014 Mw 8.2 Pisagua, Chile earthquake, this project will install 4 new CGPS stations and retrieve data from 10 CGPS stations in the Argentine Puna Plateau. Data will be made immediately available to the international earth science community through the UNAVCO Facility Archive. These geodetic data could be important in determining regions with a high likelihood of producing large aftershocks and for hazard mitigation efforts because the largest aftershock (M 7.7 on April 3) was larger than expected, potentially indicating continued unusual activity with the neighboring segments thought to retain a large slip deficit.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/96847
Appears in Collections:影响、适应和脆弱性
气候减缓与适应

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Robert Smalley. RAPID: GPS Observations of Co- and Post-seismic Deformation in the Argentine Puna from the 1 Apr 2014, Mw 8.2, Pisagua, Chile, Earthquake Sequence. 2013-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Robert Smalley]'s Articles
百度学术
Similar articles in Baidu Scholar
[Robert Smalley]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Robert Smalley]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.