globalchange  > 影响、适应和脆弱性
项目编号: 1314828
项目名称:
Data-Driven Multiscale Model Identification and Scaling via Random Renormalization Group Operators for Subsurface Transport
作者: John Cushman
承担单位: Purdue University
批准年: 2012
开始日期: 2013-07-15
结束日期: 2017-06-30
资助金额: USD400842
资助来源: US-NSF
项目类别: Standard Grant
国家: US
语种: 英语
特色学科分类: Geosciences - Earth Sciences
英文关键词: model ; rich model ; multiscale heterogeneity ; subsurface ; disparate model ; optimal model ; optimal model identification scheme ; accurate modeling ; many model ; hydrologic transport ; other random process
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/98694
Appears in Collections:影响、适应和脆弱性
全球变化的国际研究计划

Files in This Item:

There are no files associated with this item.


作者单位: Purdue University

Recommended Citation:
John Cushman. Data-Driven Multiscale Model Identification and Scaling via Random Renormalization Group Operators for Subsurface Transport. 2012-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[John Cushman]'s Articles
百度学术
Similar articles in Baidu Scholar
[John Cushman]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[John Cushman]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.