globalchange  > 科学计划与规划
项目编号: NE/J024449/1
项目名称:
Evolution of the physical, geochemical and mechanical properties of the Alpine Fault Zone: A journey through an active plate boundary
作者: Daniel Roy Faulkner
承担单位: University of Liverpool
批准年: 2011
开始日期: 2012-01-12
结束日期: 2017-31-01
资助金额: GBP538445
资助来源: UK-NERC
项目类别: Research Grant
国家: UK
语种: 英语
特色学科分类: Geosciences&nbsp ; (100%)
英文摘要: This proposal is the UK component of a major international campaign, the Deep Fault Drilling Project (DFDP) to drill a series of holes into the Alpine Fault, New Zealand. The overarching aim of the DFDP to understand better the processes that lead to major earthquakes by taking cores and observing a major continental fault during its build up to a large seismic event. The next stage of this project will be to drill and instrument a 1.5 km hole into the Alpine Fault.

Earthquakes are major geohazards. Although scientists can predict where on the Earth's surface earthquakes are most likely to occur, principally along plate boundaries, we have only imperfect knowledge. We also don't know when earthquakes will occur. This is well illustrated by recent events on the South Island of NZ. Two earthquakes in Christchurch in Sept 2010 and Feb 2011 caused 181 deaths and £7-10 billion of damage (~10% of NZ GDP). Yet Christchurch had previously been considered of relatively low seismic risk. In contrast, the western side of the South Island is defined by the Southern Alps, a major mountain chain (>3700 m) formed along the Australian-Pacific Plate boundary. Until a few million years ago this plate boundary was a strike-slip fault like the San Andreas Fault in California, but subtle changes in plate motion has led to the collision of the Pacific and Australian Plates. This caused uplift of the mountains and due to very high rates of rainfall and erosion, rapid exhumation of rocks that until recently had been deep within the Earth. Although these plates are moving past each other at ~30 mm/y and the uplift rate in the Southern Alps approaches 10 mm/y, there has not been a major earthquake along the Alpine Fault in NZ's, albeit short, written history. However, there is palaeo-seismic evidence that major earthquakes do occur along the Alpine Fault with magnitude ~8 earthquakes occurring every 200-400 years, with the latest event in 1717 AD.

Earthquake occur because stresses build-u within the relatively strong brittle upper crust. At greater depths (>15 km) rocks can flow plastically and plates can move past each other without building up dangerous stresses. On some faults, the brittle crust "creeps" in numerous small micro-earthquake events and this inhibits the build up of stress. Unfortunately there are few even micro-earthquake events along the Alpine Fault or surface evidence for deformation, suggesting that the stresses along this plate boundary have been building up since 1717 - if that stress was released in a single earthquake it would result in a horizontal offset across the fault of >8m!

A major hindrance to earthquake research is a lack of fault rock samples from the depths where stresses build up before an earthquake. Fault rocks exposed at the surface tend to be strongly altered. The strength of fault rocks will depend on a number of factors include pressure, temperature and the nature of the materials, but also whether there are geothermal fluids present. The geometry of the Alpine Fault is special in that the fault rocks that were recently deforming at depth within the crust are exposed close to the surface. Also because of rapid uplift and erosion the local geothermal gradients are high and relatively hot rocks are near the surface. This results in a relatively shallow depth (5-8 km) for the transition from brittle to plastic behaviour. This provides a unique opportunity to drill into the fault zone to recover cores of the fault, to undertake tests of the borehole strata, and to install within the borehole instruments to measure temperature, fluid pressures, and seismic activity. Once core samples are recovered we will perform geochemical and microstructural analyses on the fault rocks to understand the conditions at which they were deformed. We will subject them to geomechanical testing to see how changes in their environment affects the strength of the rocks and their ability to accommodate stresses before breaking.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/102954
Appears in Collections:科学计划与规划
气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: University of Liverpool

Recommended Citation:
Daniel Roy Faulkner. Evolution of the physical, geochemical and mechanical properties of the Alpine Fault Zone: A journey through an active plate boundary. 2011-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Daniel Roy Faulkner]'s Articles
百度学术
Similar articles in Baidu Scholar
[Daniel Roy Faulkner]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Daniel Roy Faulkner]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.