DOI: 10.1016/j.jcou.2015.02.001
Scopus记录号: 2-s2.0-84955333720
论文题名: Carbon dioxide sequestration in wastewater by a consortium of elevated carbon dioxide-tolerant microalgae
作者: Bhakta J.N. ; Lahiri S. ; Pittman J.K. ; Jana B.B.
刊名: Journal of CO2 Utilization
ISSN: 22129820
出版年: 2015
卷: 10 起始页码: 105
结束页码: 112
语种: 英语
英文关键词: Biodiesel
; Bioremediation
; CO2 sequestration
; CO2-tolerance
; Microalgal consortium
Scopus关键词: Biodiesel
; Bioremediation
; Biotechnology
; Carbon
; Global warming
; Greenhouse gases
; Wastewater treatment
; Biomass utilization
; Carbon dioxide sequestration
; Environmental factors
; High density growth
; High nutrients
; Illumination intensity
; Microalgal consortium
; Wastewater treatment plants
; Carbon dioxide
英文摘要: The emission of the green house gas (GHG) carbon dioxide (CO2) in the atmosphere at an increasingly high rate is the primary cause of global warming. A study was performed to isolate an elevated CO2-tolerant microalgal consortium (CMAC) and then characterize growth-influencing environmental factors, CO2 sequestration capacity and the potential applications of CMAC for elevated CO2 sequestration. The CMAC was isolated from a wastewater treatment plant under a selection condition consisting of 50% CO2 in air (v/v). The CMAC species were identified as Chlorella sp., Scenedesmus sp., Sphaerocystis sp. and Spirulina sp. Multiple variables including 20% CO2, culture medium pH of 8-9, and an illumination intensity of 50-80 μmol m-2 s-1 were found to be optimal for high density growth of CMAC for uptake of elevated CO2, although the CMAC were demonstrated to grow well in up to 50% CO2. The CMAC showed high CO2 sequestration (53-100%; 150-291 mg g-1) with strong growth performance in wastewater. The lipid content of CMAC was high (350 ± 0.31 mg g-1), which gave a high biodiesel yielding capacity (420 ± 0.43 mg g-1). CMAC was also found to have high nutrient removal abilities (PO4-P, up to 59% and NH4-N, up to 39%). These characteristics all indicate that the isolated CMAC could be used as an efficient tool for biofuel generation from wastewater as well as bioremediation of pollutants. Thus by coupling the identified CO2 sequestration potential of the CMAC with the wastewater tolerance characteristics, there is novel potential to integrate wastewater treatment with CO2 sequestration and biomass utilization in order to mitigate the problems of increased GHG in response to global warming. © 2015 Elsevier Ltd. All rights reserved.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/52969
Appears in Collections: 影响、适应和脆弱性
There are no files associated with this item.
Recommended Citation:
Bhakta J.N.,Lahiri S.,Pittman J.K.,et al. Carbon dioxide sequestration in wastewater by a consortium of elevated carbon dioxide-tolerant microalgae[J]. Journal of CO2 Utilization,2015-01-01,10